EMI



  • 0_1557590600370_20190511_213257.jpg
    Ans is b



  • @harshal eq resistance across inductor is R/2R/2R/2
    and at t--->infinity current in circuit will be E/RE/RE/R
    So current thru inductor at time t will be given by:

    I=ER(1−e−tR/2L)I=\frac{E}{R}(1-e^{-tR/2L})I=RE(1etR/2L)

    Hence

    LdI/dt=E2e−tR/2LLdI/dt=\frac{E}{2}e^{-tR/2L}LdI/dt=2EetR/2L

    When LdI/dt=E/4LdI/dt=E/4LdI/dt=E/4

    tR/2L=ln2tR/2L=ln2tR/2L=ln2

    Hence t=(L/R)(2ln2)=(L/R)ln4t=(L/R)(2ln2)=(L/R)ln4t=(L/R)(2ln2)=(L/R)ln4


Log in to reply
 

Powered by dubbtr | @2020